Sequence specific binding of chlamydial histone H1-like protein.

نویسندگان

  • R Kaul
  • M Allen
  • E M Bradbury
  • W M Wenman
چکیده

Chlamydia trachomatis is one of the few prokaryotic organisms known to contain proteins that bear homology to eukaryotic histone H1. Changes in macromolecular conformation of DNA mediated by the histone H1-like protein (Hc1) appear to regulate stage specific differentiation. We have developed a cross-linking immunoprecipitation protocol to examine in vivo protein-DNA interaction by immune precipitating chlamydial Hc1 cross linked to DNA. Our results strongly support the presence of sequence specific binding sites on the chlamydial plasmid and hc1 gene upstream of its open reading frame. The preferential binding sites were mapped to 520 bp BamHI-XhoI and 547 bp BamHI-DraI DNA fragments on the plasmid and hc1 respectively. Comparison of these two DNA sequences using Bestfit program has identified a 24 bp region with >75% identity that is unique to the chlamydial genome. Double-stranded DNA prepared by annealing complementary oligonucleotides corresponding to the conserved 24 bp region bind Hc1, in contrast to control sequences with similar A+T ratios. Further, Hc1 binds to DNA in a strand specific fashion, with preferential binding for only one strand. The site specific affinity to plasmid DNA was also demonstrated by atomic force microscopy data images. Binding was always followed by coiling, shrinking and aggregation of the affected DNA. Very low protein-DNA ratio was required if incubations were carried out in solution. However, if DNA was partially immobilized on mica substrate individual strands with dark foci were still visible even after the addition of excess Hc1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional domains of chlamydial histone H1-like protein.

Chlamydial trachomatis is one of the few prokaryotic organisms known to contain proteins that bear amino acid similarity to eukaryotic histone H1. It is also appreciated that chlamydial histone-like proteins, designated Hc1 and Hc2, can bind DNA and are presumably involved in the condensation of infectious elementary bodies. However, there is no information on either the orientation of Hc1 and ...

متن کامل

Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity.

Two DNA-binding proteins with similarity to eukaryotic histone H1 have been described in Chlamydia trachomatis. In addition to the 18-kDa histone H1 homolog Hc1, elementary bodies of C. trachomatis possess an antigenically related histone H1 homolog, which we have termed Hc2, that varies in apparent molecular mass among strains. We report the molecular cloning, expression, and nucleotide sequen...

متن کامل

Chlamydial SET domain protein functions as a histone methyltransferase.

SET domain genes have been identified in numbers of bacterial genomes based on similarity to SET domains of eukaryotic histone methyltransferases. Herein, a Chlamydophila pneumoniae SET domain gene was clarified to be coincidently expressed with hctA and hctB genes encoding chlamydial histone H1-like proteins, Hc1 and Hc2, respectively. The SET domain protein (cpnSET) is localized in chlamydial...

متن کامل

Rapid purification of HU protein from Halobacillus karajensis

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...

متن کامل

The Unexpected Effect of Sodium Arsenate on the Interaction between Histone H1 and Sodium N-Dodecyl Sulphate

A Study was made on the interaction between histon H1 and sodium n-dodecyl sulphate (SDS) in the presence of sodium arsenate inside a phosphate buffer of pH 6.4, using spectroscopy and equilibrium dialysis at 27 °C. The binding data has been used to obtain the gibbs free energy in terms of a theoretical model based on the Wyman binding potential. The binding data hs been analysed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 15  شماره 

صفحات  -

تاریخ انتشار 1996